
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

1 Instructor: Daniel Llamocca

Solutions - Midterm Exam
(February 14th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal BCD Binary Reflective Gray Code

42 01000010 101010 111111

54 01010100 110110 101101

169 000101101001 10101001 11111101

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (12 pts.)

REPRESENTATION

Decimal Sign-and-magnitude 1's complement 2's complement

-21 110101 101010 101011

-32 1100000 1011111 100000

45 0101101 0101101 0101101

-64 11000000 10111111 1000000

-24 111000 100111 101000

-38 1100110 1011001 1011010

c) Convert the following decimal numbers to their 2’s complement representations. (3 pts)

✓ -19.375

+19.375 = 010011.011  -19.375 = 101100.101

✓ 16.125

16.125 = 010000.001

PROBLEM 2 (15 PTS)

▪ Complete the timing diagram of the circuit shown below. 𝑦 = 𝑦3𝑦2𝑦1𝑦0, 𝑥 = 𝑥1𝑥0, 𝑠 = 𝑠1𝑠0

y

P3

s

w

E

P2

P1

P0

01 00 11 01 11 10 00 10

Unknown

f

k

x

z

11 00 01 00 11 00 10

0010 0001 1000 0010 0000 0100 0001 0100

00

11 01 01 00 11 00 1100

3

2

1

0

DECODER

w

E

y3

2

PRIORITY
ENCODER

P3
x1

x0
P2

P1
z

y2

y1

y0

s1 s0

P0 f

k

z=0when P=0000

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

2 Instructor: Daniel Llamocca

PROBLEM 3 (8 PTS)
▪ Complete the timing diagram (signals 𝐷𝑂

and 𝐷𝐴𝑇𝐴) of the following circuit. The

circuit in the blue box computes the

summation T+6, with the result having 5

bits. T is an unsigned 4-bit number.

PROBLEM 4 (12 PTS)
▪ A microprocessor has a memory space of 512 KB. Each memory address occupies one byte. 1KB = 210 bytes, 1MB = 220

bytes, 1GB = 230 bytes. We want to connect four 128 KB memory chips to this microprocessor.
✓ What is the address bus size (number of bits of the address) of the microprocessor? (1 pt).

Size of memory space: 512 KB = 219 bytes. Thus, we require 19 bits to address the memory space.

✓ For a memory chip of 128 KB, how many bits do we require to address 128 KB of memory? (1 pt).

128 KB memory device: 128 KB = 217 bytes. Thus, we require 17 bits to address the memory device.

✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips in the figure. (4 pts).

✓ Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when

the address falls in the corresponding range. Example: if address=0x2FFFF, → only memory chip 2 is enabled (CE=1).

If address=0x6ABC0, → only memory chip 4 is enabled.

Address 8 bits

000 0000 0000 0000 0000: 0x00000

000 0000 0000 0000 0001: 0x00001

... ...

001 1111 1111 1111 1111: 0x1FFFF

128KB

1

010 0000 0000 0000 0000: 0x20000

010 0000 0000 0000 0001: 0x20001

... ...

011 1111 1111 1111 1111: 0x3FFFF

100 0000 0000 0000 0000: 0x40000

100 0000 0000 0000 0001: 0x40001

... ...

101 1111 1111 1111 1111: 0x5FFFF

110 0000 0000 0000 0000: 0x60000

110 0000 0000 0000 0001: 0x60001

... ...

111 1111 1111 1111 1111: 0x7FFFF

128KB

128KB

128KB

2

3

4

00000

1FFFF

20000

3FFFF

40000

5FFFF

60000

7FFFF

...
...

...
...

128 KB

CE

128 KB

CE

128 KB

CE

128 KB

CE

19address

17 17 17 17

Memory

devices

1 2 3 4

w0
w1

y0
y1
y2
y3

address(16..0)

address(17)

address(18)

128KB

128KB

128KB

128KB

Memory

space

1

2

3

4 decoder

0101DATA

OE

1011

DI

DO

1100 1110

0101 0110 1011 1101 1001

0110 1011 1101 1001

10001 01011 10010 10100

OE

DI DATA

DO T+6
5

4 4

T

4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

3 Instructor: Daniel Llamocca

PROBLEM 5 (17 PTS)
a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits 𝑛 to

represent both operators. Indicate every carry (or borrow) from c0 to cn (or b0 to bn). For the addition, determine whether
there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts)

✓ 49 + 18 ✓ 38 – 42

b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c0 to cn. For

each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts)
✓ -37 + 50 ✓ -26 - 40

c) Perform binary multiplication of the following numbers that are represented in 2’s complement arithmetic. (3 pts)

✓ -6 x 9

PROBLEM 6 (10 PTS)
▪ Given two 4-bit signed numbers 𝐴, 𝐵, sketch the circuit that computes |𝐴 − 2𝐵|. For example: 𝐴 = 1010, 𝐵 = 0110 →

 |𝐴 − 2𝐵| = |−6 − 2 × 6| = 18. You can only use full adders and logic gates. Your circuit must avoid overflow: design your

circuit so that the result and intermediate operations have the proper number of bits.

𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0: signed numbers

𝐴, 𝐵 ∈ [−8,7] → 2𝐵 ∈ [−16,14] requires 5 bits in 2C. 2𝐵 = 𝑏3𝑏2𝑏1𝑏00
✓ 𝑋 = 𝐴 − 2𝐵 ∈ [−22,23] requires 6 bits in 2C. Thus, the operation 𝐴 − 2𝐵 requires 6 bits (we sign-extend 𝐴 and 2𝐵).

𝐴 − 2𝐵 = 𝑎3𝑎3𝑎3𝑎2𝑎1𝑎0 − 𝑏3𝑏3𝑏2𝑏1𝑏00

✓ |𝑋| = |𝐴 − 2𝐵| ∈ [0,23] requires 6 bits in 2C. Thus, the second operation 0 ± 𝑋 only requires 6 bits.

 If 𝑥5 = 1 → 𝑋 < 0 → we do 0 − 𝑋.

 If 𝑥5 = 0 → 𝑋 ≥ 0 → we do 0 + 𝑋.

49 = 0x31 = 1 1 0 0 0 1 +

18 = 0x12 = 0 1 0 0 1 0

1 0 0 0 0 1 1Overflow!

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

38 = 0x26 = 1 0 0 1 1 0 -

42 = 0x2A = 1 0 1 0 1 0

1 1 1 1 0 0

b 6
=1

b
5=
1

b
4=
1

b
3=
0

b
2=
0

b
1=
0

b
0=
0

Borrow out!

1 0 1 0 x

0 1 0 0 1

1 0 0 1 x

0 1 1 0

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

0 1 1 0 1 1 0

1 0 0 1 0 1 0

-37 = 1 0 1 1 0 1 1 +

50 = 0 1 1 0 0 1 0

13 = 0 0 0 1 1 0 1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=1

c 1
=0

c 0
=0

c7c6=0

No Overflow

n = 7 bits

-37 + 50 = 13  [-26, 26-1] → no overflow

-40 = 1 0 1 1 0 0 0 +

-26 = 1 1 0 0 1 1 0

0 1 1 1 1 1 0

c 7
=1

c 6
=0

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

c7c6=1

Overflow!

n = 7 bits

-40 -26 = -66  [-26, 26-1] → overflow!

To avoid overflow: n = 8 bits (sign-extension)

c8c7=0

No Overflow

-40 -26 = -66  [-27, 27-1] → no overflow

c 8
=1

c 7
=1

c 6
=0

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

-40 = 1 1 0 1 1 0 0 0 +

-26 = 1 1 1 0 0 1 1 0

1 0 1 1 1 1 1 0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

4 Instructor: Daniel Llamocca

PROBLEM 7 (18 PTS)
▪ Sketch the circuit that implements the following Boolean function: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎𝑏̅̅ ̅̅ ̅̅)(𝑐𝑑̅̅ ̅̅ ̅̅)

✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎𝑏̅̅ ̅̅ ̅̅)(𝑐𝑑̅̅ ̅̅ ̅̅)

𝑓 = 𝑎̅𝑓(0, 𝑏, 𝑐, 𝑑) + 𝑎𝑓(1, 𝑏, 𝑐, 𝑑) = 𝑎̅ (𝑏̅(𝑐𝑑̅̅ ̅̅ ̅̅)) + 𝑎 (𝑏(𝑐𝑑̅̅ ̅̅ ̅̅)) = 𝑎̅𝑔(𝑏, 𝑐, 𝑑) + 𝑎ℎ(𝑏, 𝑐, 𝑑)

𝑔(𝑏, 𝑐, 𝑑) = 𝑏̅(𝑐𝑑̅̅ ̅̅ ̅̅) + 𝑏(0)

ℎ(𝑏, 𝑐, 𝑑) = 𝑏̅(0) + 𝑏(𝑐𝑑̅̅ ̅̅ ̅̅)

𝑡(𝑐, 𝑑) = (𝑐𝑑̅̅ ̅̅ ̅̅) = 𝑐̅(𝑑̅) + 𝑐(𝑑)

 Also: 𝑑̅ = 𝑑̅(1) + 𝑑0)

✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)

FA

a0 0

x0

FA

a1 b0

x1

FA

a2 b1

x2

1
FA

a3 b2

x3

FA

b3

x4

FA

x5

FAFAFAFAFA

s4 s3 s2 s1 s0

FA

s5

0 0 00 0 0 x5

FA

s

cout

x y

FULL ADDER

cin

a3b3a3

0

1
0

1

f

0

1

1

0

0

1

g

h

ab

t

0

c

0

1

d

d

d

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1

0

1

LUT
3 to 1

𝑓 𝑎, 𝑏, 𝑐, 𝑑

𝑔 𝑏, 𝑐, 𝑑 = 𝑓 0, 𝑏, 𝑐, 𝑑

ℎ 𝑏, 𝑐, 𝑑 = 𝑓 1, 𝑏, 𝑐, 𝑑

𝑏
𝑐
𝑑

LUT
3 to 1

𝑎

𝑏
𝑐
𝑑

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1

